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SPATIAL VARIABILITY AND CORRELATION OF SELECTED SOIL

PROPERTIES IN THE AP HORIZON OF A CRP GRASSLAND

J. D. Jabro,  W. B. Stevens,  R. G. Evans,  W. M. Iversen

ABSTRACT. Knowledge of the spatial variability of soil properties in agricultural fields is important for implementing various
precision agricultural management practices. This article examines spatial variation of selected soil physical and chemical
properties and explores their spatial correlation in the Ap horizon of a Lihen sandy loam soil (sandy, mixed, frigid Entic
Haplustoll) within a field of grass‐alfalfa Conservation Reserve Program (CRP) land. Soil measurements were made on a
16 × 36‐m grid sampling pattern. Soil properties including penetration resistance (PR), bulk density (�b), and gravimetric
water content (�m) were measured by collecting undisturbed soil cores from 5‐ to 10‐cm and 20‐ to 25‐cm depths. Additional
disturbed soil samples were collected for particle size distribution, electrical conductivity (ECe), and pH analysis. The two
depths were averaged for the assessment of spatial distribution, relationships and interpolation of soil properties. Soil
saturated hydraulic conductivity (Ks) and total porosity (�T) for the 0‐ to 25‐cm depth were estimated from �b, �m, and
volumetric water content at field capacity (FC) level. Soil properties were analyzed using both classical and geostatistical
methods that included descriptive statistics, semivariograms, cross‐semivariograms, spatial kriged and co‐kriged prediction
maps and interpolation. Results indicated that small to moderate spatial variability existed across the field for soil properties
studied. Furthermore, cross‐semivariograms exhibited a strong negative spatial interdependence between soil PR and �m,
�T, and lnKs. Spatial variability of soil �m, �b, PR, ECe, pH, and clay content and their spatial correlation in the Ap horizon
of the CRP grassland were attributed to a combination of previous farming practices, topographic characteristics, vegetation
history, soil erosion, and weather conditions at this site.

Keywords. Spatial variability, Statistics, Semivariogram, Cross‐semivariogram, Kriging.

oil properties vary over space and time. Spatial
variability is a term indicating changes in the value
of a given property over space (Ettema and Wardle,
2002). It can be assessed using classical descriptive

statistics (i.e., mean, range, coefficient of variation) or
geostatistics (i.e., semivariogram, autocorrelation, cross‐
semivariogram,  kriged, and co‐kriged maps).

Knowledge of the spatial variability of soil properties is
essential for site‐specific soil management and evaluation of
various agricultural land management practices. Spatial
variability and distribution of soil properties within
agricultural  fields can be classified as static (e.g. texture,
mineralogy) due to soil formation processes or dynamic (e.g.
water content, compaction, electrical conductivity, carbon
content) caused by various land management practices (Jabro
et al., 2006). Both static and dynamic soil physical and
chemical properties vary across agricultural fields,
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contributing to variable crop yields. Thus characterization of
the spatial variability of these soil properties within
agricultural  fields is essential for site‐specific management,
also referred to as precision agriculture practices, and can
help explain significant effects on the spatial distribution of
crop yield and quality.

Spatial variability and correlation of various soil
properties across the landscape has been intensively studied
and evaluated during the past two decades using both
classical statistics and the theory of regionalized variables as
evaluated using geostatistical methods (Cambardella et al.,
1994; Fulton et al., 1996; Gaston, et al., 2001; Huang et al.,
2001; Iqbal et al., 2005; Mzuku et al., 2005; Guo‐Shun et al.,
2008). These researchers have shown that various soil
properties can vary significantly within a single field.

Geostatistics have proved useful for assessing spatial
variability of soil properties and have increasingly been
utilized by soil scientists and agricultural engineers in recent
years (Webster and Oliver, 2001; Iqbal et al., 2005).
Furthermore, geostatistical methods have been adopted and
used in site‐specific management applications, soil sampling
strategies and assessment of farm management styles and
decisions.

Semivariograms and cross‐semivariograms have been
used to characterize and model spatial variance of data to
assess how data points are related with separation distances
while kriging uses modeled variance to estimate values
between samples (Journel and Huijbregts, 1978). Kriging and
co‐kriging are common geostatisical procedures that have
been used for optimal estimation and spatial interpolation of
values at unsampled locations. Co‐kriging uses more than
one variable in spatial interpolation process. It employs a
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second variable to estimate values of primary variable of
interest that were assumed to be spatially dependent
(Matheron, 1963; McBratney and Webster, 1983; Davis,
1986).

Little information has been reported on the spatial
variability of soil properties in long‐term Conservation
Reserve Program (CRP) grassland fields. The 4.75‐ha
sub‐site used in this study presented a rare opportunity to
study effects of past agricultural management systems on
spatial relationships among selected soil properties.
Therefore, the objectives of this study were to i) characterize
field‐scale spatial variability of selected soil properties in the
Ap horizon of dryland grass‐alfalfa field in the semiarid
region of the Northern Great Plains that had been under CRP
management  for more than 20 years; and, ii) to explore the
spatial interdependence between penetration resistance (PR)
and other soil properties using cross‐semivariance analysis.

We selected the Ap horizon for soil sampling and
measurements because this layer represented the plough
layer (0‐ to 25‐cm depth) and soil properties at this layer are
most affected by land management practices.

MATERIALS AND METHODS
SOIL DESCRIPTION, DATA COLLECTION, AND SITE

CHARACTERIZATION

A study was conducted in April 2005 on a CRP grassland
site located at MonDak Irrigation Research Farm in the
Nesson Valley area located approximately 37 km east of
Williston, North Dakota (48.1640°N, 103.0986°W). The
topography of land (fig. 1) gradually slopes from NW to SE
at approximately 2%. The soil is mapped as Lihen sandy
loam (sandy, mixed, frigid Entic Haplustoll) consisting of
very deep, somewhat excessively or well drained, slightly
sloping soil that formed in sandy alluvium, glacio‐fluvial,
and eolian deposits in places over till or sedimentary bedrock
(www.ftw.nrcs.usda.gov).

Particle size distribution analysis indicated that the
textural class of the Ap horizon (0‐25 cm) fell consistently
within the sandy loam classification. The amount of sand,
silt, and clay at 0‐ to 25‐cm depth ranged from 53.4 to 77.4%,
6.7 to 25.8%, and 12.8 to 23.2%, respectively. Soil bulk
density at 0‐ to 25‐cm depth ranged from 1.31 to 1.65 Mg m‐3.
Climate at the location is semi‐arid with an average annual
rainfall of about 360 mm, of which about 40% typically
occurs in the months of May, June, and July.

The experiment was conducted on a 4.5‐ha portion of a
65‐ha dryland farm that was converted in the spring of 2005
to an irrigated research farm. After being broken out of native
prairie in about 1905, the site was managed as a dryland small
grains farm for approximately 80 years using conventional
tillage (i.e., moldboard plough) and alternating years of crop
production and fallow. Wind erosion of soil particles was
severe at times during this period. Because of its erodibility,
the land was seeded in 1988 to a mix of crested wheatgrass
[Agropyron cristatum (L.) Gaertn.] and alfalfa (Medicago
sativa L.) then placed in the USDA CRP for 10 years (Wayne
Vance, personal communication, 2006). From 1998 to 2004,
the site was managed as a dryland perennial hay field and was
cut for hay when precipitation was sufficient to produce a
harvestable crop.

Figure 1. Map showing elevation contours and grid sampling points.

A geo‐referenced sampling scheme using Differential
Global Positioning System (Omnistar, Inc., Houston, Tex.)
was utilized for acquiring soil samples and making soil
compaction measurements. Soil properties measured at the
site included penetration resistance (PR) as an indicator of
soil strength or compaction. Soil bulk density, Mg m‐3 (ρb)
and gravimetric water content, g g‐1 (�m) were measured by
collecting undisturbed soil cores from 5‐ to 10‐cm and 20‐ to
25‐cm depths using a standard 5‐cm inner diameter probe.
Additional disturbed soil samples were collected for
electrical  conductivity, mS m‐1 (ECe) and pH analyses.
Saturated soil extracts were prepared (Rhoades, 1996) and
used to measure ECe and pH with an electrical conductivity
meter (Model #3084, Amber Science, Inc., Eugene, Oreg.)
and pH meter, respectively.

Soil PR was measured using a digital penetrometer (Field
Scout, SC 900 Soil Compaction Meter, Spectrum
Technologies, Inc., Plainfield, Ill.) at three different locations
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within an approximately 30‐cm radius of where soil cores for
bulk density were extracted. Soil PR readings were recorded
in 2.5‐cm increments to a depth of 25 cm and averaged from
0‐ to 25‐cm soil depth for each plot.

Soil properties measurements were made on a 16‐ × 36‐m
grid sampling pattern forming 72 individual grid cells. Soil
properties were measured at the center of each grid cell at
depths of 0 to 10 cm and 20 to 25 cm, which represented the
Ap horizon in this semi‐arid environment. The two depths
were averaged for the assessment of spatial distribution and
relationship of soil properties.

Soil saturated hydraulic conductivity for the 0‐ to 25‐cm
depth was estimated from effective porosity (�e) and water
contents at field capacity (FC) data (Suleiman and Ritchie,
2001) as:
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where Ks is the saturated hydraulic conductivity of the soil
(cm d‐1) and �e is the effective soil porosity (total porosity
(�T) minus water content at FC). The measured FC for Lihen
sandy loam soil at 0‐ to 25‐cm depth was 0.234 m3 m‐3 (Jabro
et al., 2009). The total soil porosity (�T) was calculated from:
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where ρb was soil bulk density and 2.65 Mg m‐3 was the soil
particle density.

STATISTICAL METHODS

Descriptive statistics, including mean, maximum,
minimum and coefficient of variation (CV) were obtained for
each soil property using SAS software (SAS Institute, 2003).
Linear correlation coefficient analysis was performed among
all soil physical properties. All data were checked for
normality using SAS probit and frequency procedure, which
indicated no need to transform the data prior to using
geostatistical  analysis except for ECe and Ks data. The probit
procedure revealed that ECe and Ks data were best fit by a
log‐normal distribution and thus were log‐transformed to
attain normality.

A student t‐test showed that there were no significant
differences between the two depths for all measured soil
variables except for PR thus allowing the two depths to be
averaged for the assessment of spatial variability of soil
properties using geostatistical methods.

Geostatistical  analyses, including semivariogram,
cross‐semivariogram model fitting and kriging procedures,
were carried out using GS+ (Gamma Design Software, 2004,
Geostatistics for the Environmental Sciences, St. Plainwell,
Mich.) to assess the degree of spatial variability of each soil
property used in this study. Measurements of �m, �T, PR,
lnKs, lnECe were block‐ordinary kriged to produce
interpolated spatial maps. Prior to applying geostatistical
procedures, each soil variable used in this study was checked
for presence of trends in the data, and for anisotropy at
various directions (0, 45, 90 and 135 degrees). There were no
trends in the data for all soil properties except for �m data
where a linear trend was detected in northern direction.

Linear trends were removed by fitting a linear regression
equation to the 18 means in northern direction calculated

from four transects of moisture content data in eastern
direction (Rajkai and Ryden, 1992). Isotropic semivariogram
models were best fit to the experimental data. Residual sums
of squares (RSS) in conjunction with R2 were used to select
the exact form and best fit of the semivariogram model. The
RSS provides a sensitive, robust measure of how well the
model fits the experimental semivariogram data, the lower
the RSS, the better the model fits the data. A trial and error
procedure based on optimization of both RSS and R2 was
used to select the best fit model to the experimental
semivariance values for each soil property.

Semivariance is expressed in equation 3 as described by
Journel and Huijbregts (1978) and Clark (1979).

 ∑
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where )h(γ�  is semivariance for the interval distance class, h
is the lag distance, z(xi) is the measured sample value at point
xi, z(xi+h) is the measured value at point xi+h, and N(h) is the
total number of pairs for lag interval h.

The spherical model defined in equations 4 and 5 provided
the best fit for the experimental semivariance of soil PR,
lnECe, and pH.
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and
 CCh +=γ 0)(  for h > A (5)

where C0 is nugget effect value, C is the partial sill, (C0+ C)
is the sill or total semivariance, A is the range, and h is the
distance. Note that �(h) = 0 when h = 0. The three parameters
of semivariograms models are defined according to Bai et al.
(2009) as follows: “A nugget is the value of the
semivariogram for a distance equal to zero. A non‐null
nugget may indicate either a systematic measurement error
or that a spatial variation occurs at a scale smaller than that
used for measurements. The sill is the final stable value of the
semivariogram.  The range is the distance at which the
semivariance reaches that stable value.”

The exponential model (eq. 6) is similar to the spherical
model (eq. 5), in that it approaches the sill gradually and
reaches the specified sill, (C0+ C), at the specified range, A.
However, the exponential model (eq. 6) approaches the sill
asymptotically, with A representing the practical range, the
distance at which the semivariance reaches 95% of the sill
value (Journel and Huijbregts, 1978; Clark, 1979; Bohling,
2005).

The exponential model (eq. 6) provided the best fit for the
experimental  semivariance for �T and lnKs.
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The Gaussian model is similar to the exponential model
but assumes a gradual rise for the y‐intercept (Journel and
Huijbregts, 1978).
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The Gaussian model defined in equation 7 provided the
best fit for the experimental semivariance for original and
de‐trended data of soil �m.

Cross‐semivariances  were also calculated to examine a
spatial relationship between two variables at the same
location and then variables are said to be co‐regionalized or
interrelated (Heisel et al., 1999). The cross‐dependence
between two variables u and v has a cross‐semivariogram
expressed as:
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 is cross‐semivariance between u and v
variables for the interval distance class, h is the lag distance,
N(h) is the total number of pairs for lag interval h, zu(xi) and
zu(xi+h) are the measured values of variable zu, zv(xi) and
zv(xi+h) are the measured values of variable zv at points xi
and xi+h, respectively (Journel and Huijbregts, 1978). The
cross‐semivariogram is positive when the values of u and v
variables vary jointly or dependently, negative when the
values of these two variables vary in opposite directions and
null when the two variables vary independently (McBratney
and Webster, 1983). The two variables are called
co‐regionalized  and spatially dependent and are used in the
co‐kriging estimation technique (McBratney and Webster,
1983).

Maps of kriged and co‐kriged predictions from fitted
semivariograms and cross‐semivariograms were produced
for soil variables using ordinary block kriging interpolation
with a block size of 2 × 2 m using GS+ software (Journel and
Huijbregts, 1978). The accuracy of kriged and co‐kriged
maps was evaluated using cross validation statistical
methods by comparing the actual and predicted values
(Santra et al., 2008).

RESULTS AND DISCUSSION
DESCRIPTIVE STATISTICS

Descriptive statistics for soil properties selected in this
study are given in table 1. The CV values of measured and
estimated soil properties ranged between 3.4% for pH and
23.1% for Ks. The variability of soil properties within the
study site was classified as low (0‐15%) to medium (15%‐

Table 1. Summary statistics for selected 
soil properties of 0‐ to 25‐cm top soil.

Soil Property Mean Minimum Maximum CV%[a]

Moisture content, θm (g g‐1) 0.099 0.079 0.132 11.6

Total porosity, εT (m3 m‐3) 0.419 0.377 0.468 4.7

Penetration resistance, PR (MPa) 1.93 1.27 2.70 16.7

Hydraulic conductivity, (Ks) 
   (cm d‐1)[b]

52.62 30.77 107.32 23.1

Electrical conductivity, ECe
   (mS m‐1)[b]

56.85 36.30 68.50 44.5

pH 6.82 6.16 7.22 29.7
[a] CV is the coefficient of variation.
[b] Calculations are based on log‐transformed data.

75%) based on the CV values according to the groupings
described by Dahiya et al. (1984). This indicates that PR and
Ks exhibit medium variability while the remaining soil
properties quantified in this study exhibit low variability
(CV= 0 ‐15%) within the study area.

Linear correlation coefficients (r) between soil PR and �m,
�T, and lnKs  were negative, moderate, and significant at the
probability level less than 0.01. The r values between soil PR
and �m, �T, and lnKs were ‐0.45, ‐0.44, and ‐0.46,
respectively.

The basis of the negative relationships between soil PR
and �m, �T, and Ks is direct; that is, higher soil PR values are
associated with smaller �T and lower �m levels in the soil.
Water flow through the soil expressed by Ks is associated
directly with soil �T and thus it is inversely affected by soil
compaction.

GEOSTATISTICAL METHODS
Semivariogram Analysis

The isotropic semivariograms for �m (original and
detrented data), �T, PR, lnKs, lnECe, and pH at 0‐ to 25‐cm
soil depth were computed and shown in figures 2A‐2G,
respectively. Semivariogram coefficients for each soil
property with the best‐fitted model are listed in table 2. The
R2 values in table 2 show that models fit the experimental
semivariogram data very well for all soil properties except
pH. Concurrently, the RSS values were extremely small for
semivariogram models of all soil properties investigated in
this study.

The nugget to sill ratio (C0/C0+C) expressed as the nugget
ratio (Ersahin and Brohi, 2006; Mallants et al., 1996) was

Table 2. Coefficients of the theoretical semivariogram models of soil properties.

Soil Property Model Nugget, C0 Sill, C0 + C CC

C

+
0

0

Ratio,Nugget

Range,
A  (m) RSS[a] R2

Moisture content (original data), θm (g g‐1) Gaussian 0.00005 0.00063 0.08 377 4.8×10‐10 0.96

Moisture content (detrended data), θm (g g‐1) Gaussian 0 0.000276 0 19 1.5×10‐8 0.57

Total porosity, εT (m3 m‐3) Exponential 0.00024 0.0005 0.48 37 6.6×10‐9 0.80

Penetration resistance, PR (MPa) Spherical 0.0218 0.1226 0.18 163 2.2×10‐4 0.98

Hydraulic conductivity, ln(Ks) (cm d‐1)[b] Exponential 0.0247 0.05 0.49 35 2.7×10‐5 0.88

Electrical conductivity, lnECe (mS m‐1)[b] Spherical 0.00623 0.017 0.36 76 9.3×10‐5 0.84

pH Spherical 0.0025 0.054 0.05 23 1.6×10‐4 0.24

[a] RSS is the residual sums of squares for the theoretical semivariogram models.
[b] Analyses are based on log‐transformed data.
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Figure 2A. Semivariogram of moisture content (original data), �m.

Seperation distance, h (m)

0 50 100 150 200

�
(h

),
 d

et
re

nd
ed

�
m

 (
g/

g)
2

0.0000

0.0001

0.0002

0.0003

0.0004

Gaussian model

Sample variance

B

Figure 2B. Semivariogram of moisture content (detrended data), �m.
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Figure 2C. Semivariogram of total porosity, �T.
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Figure 2D. Semivariogram of penetration resistance, PR.
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Figure 2E. Semivariogram of hydraulic conductivity, lnKs.
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Figure 2F. Semivariogram of electrical conductivity, lnECe.
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Figure 2G. Semivariogram of pH.

calculated for each soil physical property and used to
evaluate the degree of spatial dependence and correlation
associated with each soil property (table 2). The nugget ratio
values were then categorized into one of three classes to
define distinctive spatial dependence in soil properties
(Cambardella  et al., 1994). A structural variance value close
to zero indicates continuity in the spatial dependence.

If the nugget ratio was <0.25, the property was considered
strongly spatially dependent; if the nugget ratio was >0.25
and <0.75, the property was considered moderately spatially
dependent; and if the nugget ratio was >0.75, the property
was considered weakly spatially dependent (Cambardella
et al., 1994; Iqbal et al., 2005; Jabro et al., 2006).

The nugget ratio values from resulting theoretical
semivariograms (figs. 2A‐2G) indicate strong spatial
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dependencies for �m (both original and detrended data), PR,
and Ph, and moderate spatial dependencies for �T, lnKs, and
lnECe parameters (table 2). However, the semivariograms
for �m (detrended data), �T, lnECe, and pH show a nugget
value close to zero or zero (table 2, figs. 2B, 2C, 2F, and 2G).
A zero nugget effect value for soil properties indicates a
smooth spatial continuity and dependency among adjacent
sampling points (Journel and Huijbregts, 1978; Davis, 1986;
Vieira and Gonzalez, 2003).

The ranges of spatial dependencies were large and vary
between 23 m for pH to 377 m for �m indicating that the
optimum sampling interval varies greatly among different
soil properties. In general, results from both classical and
spatial statistics indicated that small to moderate spatial
variability existed across the field for all soil properties
selected in this study.

Cross‐Semivariogram Analysis

The isotropic cross‐semivariograms of soil PR with �m,
�T, and lnKs are shown in figures 3A, 3B, and 3C,
respectively. Cross‐semivariograms were calculated to
explore and determine spatial interrelations using
co‐regionalized  models between PR and other measured soil
properties. Among different theoretical cross‐semivariogram
models tested, Gaussian, spherical, and exponential models
were best fitted to the experimental values of PR with �m, �T,
and lnKs, respectively. Cross‐semivariogram models and
their spatial interrelations coefficients are presented in
table 3.

The R2 and the RSS for theoretical cross‐semivariogram
models to fit the experimental values between soil PR and
�m, �T, and lnKs are given in table 3. The R2 and RSS values
in table 3 show that models fit the experimental
cross‐semivariance  data exceptionally well in all cases used
in this study.

Once again, using the criteria suggested by Cambardella
et al. (1994) to evaluate the spatial interrelation between two
related soil properties, the cross‐semivariograms exhibited a
strong negative spatial interdependence between soil PR and
�m, �T, and lnKs. Table 3 gives the structural correlation
coefficients from the three models of co‐regionalization for
PR with �m, �T and lnKs whose cross‐semivariograms are
also illustrated in figures 3A, 3B, and 3C, respectively. The
cross‐semivariograms were negative in all cases indicating
that values of the two variables tend to vary independently.

The structural variance values from the models were
smaller than 0.25, suggesting that spatial interrelationships
are strong between soil properties considered in this study.
The nugget effect values for all three interrelated models
were very small and close to zero (table 3, figs. 3A, 3B, and
3C), indicating a spatial smoothing among adjacent sampling
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Figure 3A. Cross‐semivariogram of PR × �m.
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Figure 3B. Cross‐semivariogram of PR × �T.
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Figure 3C. Cross‐semivariogram of PR × lnKs.

points (Journel and Huijbregts, 1978; Davis, 1986; Vieira and
Gonzalez, 2003). These results showed that significant
spatial relationships existed among soil properties at the

Table 3. Coefficients of the theoretical cross‐semivariogram models for combination of soil properties.

Soil Properties[a]

Combination Model Nugget, C0 Sill, C0 + C CC

C

+
0

0

Ratio,Nugget

Range
A (m) RSS[b] R2

PR × θm Gaussian ‐0.0019 ‐0.0102 0.19 334 1.4×10‐7 0.98

PR × εT Spherical ‐0.00006 ‐0.0041 0.02 216 6.4×10‐7 0.96

PR × lnKs Exponential ‐0.0001 ‐0.0736 0.001 220 5.9×10‐5 0.97
[a] PR is soil penetration resistance, θm is soil moisture content, εT is soil total porosity, and Ks is saturated hydraulic conductivity.
[b] RSS is the residual sums of squares for the theoretical cross‐semivariogram models.
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same location. The higher soil PR values are associated with
lower �m, � T, and Ks for a sandy loam soil in a CRP grassland
production field.

The cross‐semivariograms results of PR with �m, �T, and
lnKs data sets were used in co‐kriging analysis and
calculations (co‐kriged maps not shown). The results showed
that both kriged and co‐kriged predictions were close to zero
and about the same after they were evaluated and compared
using cross‐validation statistical methods (see table 4). Both
the mean difference error (MDE) and the mean square error
(MSE) showed that co‐kriging did not improve predictions
for PR with �m, �T, and lnKs data compared to kriging
(table 4). Thus, kriging is considered to be an accurate and
adequate for spatial interpolation of soil properties used in
this study.

BLOCK KRIGED MAPS

Spatial prediction maps produced by the block kriging
procedure using the semivariogram coefficients in table 2 for
selected soil properties are shown in figures 4A‐4F. The
spatial distribution of �m follows the topographical feature of
the field where the land steadily slopes from north‐west to
south‐east at approximately 2% (fig. 1). The values of �m
were small (0.084 to 0.091 g g‐1) in the north‐western corner
and gradually increased (0.111 to 0.118 g g‐1) toward
south‐eastern corner of the field (fig. 4A). Consequently,
comparison of areas relatively high in �m to areas high in clay
content (20 to 23%) generally showed direct spatial
relationships with the highest values of �m and clay content
occurred at the lowest field topographical positions (Jabro
et al., 2006).

The spatial map of soil �T indicated that larger �T were
located in the south and south‐eastern parts of the field
extending from south and south‐eastern to north and
north‐western areas of the field (fig. 4B). The spatial patterns
of variation in soil �T were associated directly to spatial
variations in clay contents within the field (Jabro et al., 2006).
Moreover, the patterns of spatial variations in Ks were also
directly correlated (r = 0.99, P < 0.01) to spatial variations in
�T since Ks was empirically estimated from the �T related soil
properties data.

The spatial PR predictions map (fig. 4C) shows a similar
scenario with high PR values (2 to 2.5 MPa) on the western
half and northern part of the field and low PR values (1 to
1.6 MPa) located on the eastern half of the field. There were
obvious and semi‐consistent spatial relationships between
patterns of variation in soil PR and �T within the field. In
general, areas where the PR values were low corresponded
with high clay contents and �T in the soil.
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Similarly, spatial distribution of ECe was also associated
with the spatial distribution and variation of clay content in
the soil. The largest ECe values were along the southern and
eastern parts of the field, with smaller values along the

Table 4. Cross‐validation statistics of kriging and co‐kriging of soil properties.

Kriging Co‐kriging

Soil Property MDE[a] MSE[a] MDE[a] MSE[a]

Moisture content, θm (g g‐1) 0.00014 0.000076 0.00018 0.000076

Total porosity, εT (m3 m‐3) 0.00042 0.00051 0.00014 0.00064

Penetration resistance, PR (MPa) 0.0015 0.053 0.0022 0.06

Hydraulic conductivity (Ks) (cm d‐1) 0.0023 0.043 0.0024 0.058

predicted values, respectively, at a location i, and n is the number of observations.
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northern and northeastern field boundaries. In general, areas
where soil ECe values were large (ECe = 4.09 to 4.18 mS m‐1)
corresponded directly with higher contents of clay in the soil
(20 to 23%) within the field because clay is generally higher
in conductivity and tends to hold more water than sand and
silt particles (Jabro et al., 2006).

Figure 4F shows spatial distribution patterns of pH within
the CRP field. Two stretches of relatively high soil pH ran
across the field with randomly distributed small high and low
pH spots within the field. The spatial distribution of soil pH
clearly followed topographical characteristics of the field
where lower soil pH (6.62 to 6.80) dominated the south and
southeastern areas in the lowest topographical position of the
field while higher pH (6.80 to 6.99) dominated the northern
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Figure 4F. Soil pH.

and northwestern areas in the higher topographical positions.
These results agreed with those found by Gaston et al. (2001)
where soil pH was associated with clay and organic carbon
contents in the lower topographical areas of the field.

 Spatial statistics indicated that �m, �T, PR, Ks, ECe, pH,
and clay content were spatially associated explaining some
trends in soil variability within the field. The variations in the
Ap horizon of CRP grassland may also be affected by other
factors such as vegetation, previous farming practices, and
weather conditions. For example, information about
previous management indicates that soil erosion by wind and
water occurred extensively prior to implementation of
conservation practice and likely caused finer soil particles to
be transported from higher to lower landscape positions
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causing differences in soil particle size distribution, pH, ECe,
and water holding capacity. This soil particle transport, along
with inherent topographical variations and characteristics,
would be expected to influence the amount and type of
biomass produced by both native and cultivated forage
species, leading to spatial variability in soil organic matter
content that then influences water holding capacity, organic
carbon, pH, aggregation, pore space associated with water at
field capacity level, and soil structure in the surface layer
(Jabro et al., 2006). Spatial variability in these soil properties
has been shown to influence the spatial distribution of crop
yield and is thus considered an important factor when
implementing  site‐specific irrigation and fertilizer practices
(Russo, 1986b; Sadler et al., 2005). Russo (1986a) used a
simplified crop response model to illustrate that spatial
variability of soil moisture content and soil salinity lead to
spatial variability in crop yield, especially under deficit soil
moisture conditions. In a subsequent article (Russo, 1986b),
the authors concluded that it is important to analyze the
inherent spatial distribution of soil in a field when
implementing  improved irrigation management schemes and
their simulated data suggests that 29% less irrigation water
was required when applied based on soil properties than when
applied uniformly. Similarly, Hedley and Yule (2009)
concluded that 21.8 to 26.3% less water was needed where
variable rate irrigation was implemented based on patterns in
apparent soil electrical conductivity (ECa). Physical
properties of soil may also affect N management, primarily
because of their influence on soil water movement. Delgado
(1999; 2001) observed different post‐harvest soil NO3‐N
concentrations in areas of a field that differed in soil texture.
Subsequently, Delgado and Bausch (2005) reported a 50%
reduction in nitrogen fertilizer inputs and an 85% reduction
in NO3‐N leaching when soil spatial variability was managed
using site‐specific management. Finally, successful
implementation  of site‐specific management practices
depends on accurately describing variability of the pertinent
soil properties. Characteristics of spatial relationships can
have a significant impact on the success of various soil
sampling strategies. For example, Corwin et al. (2003)
concluded that knowledge of soil variability patterns can
guide a directed soil sampling approach that may more
efficiently provide information necessary to generate
site‐specific management recommendations. Our results
provide further information about the spatial dependency of
some of the primary soil parameters that influence
site‐specific management decisions.

SUMMARY AND CONCLUSIONS
The spatial variation of �m, �T, PR, lnKs, lnECe, and pH

at the 0‐ to 25‐cm depth of the Ap horizon of a sandy loam
soil within a field of CRP grassland was explored and
assessed using classical and geostatistical methods. Results
from both statistical approaches indicated that small to
moderate spatial variability existed across the field for soil
properties considered in this study. Cross‐semivariograms
exhibited a strong negative spatial interdependence between
soil PR and �m, �T, and lnKs. Both MDE and MSE showed
that co‐kriging did not improve predictions for PR with �m,
�T, and lnKs than kriging. Thus, kriging is considered to be
an accurate and adequate method for spatial interpolation and

evaluation of soil properties considered in this study. Spatial
statistics indicated that, �m, �T, PR, Ks, ECe, pH, and clay
content were spatially associated explaining some trends in
soil variability within the field. The variations in soil
properties in the Ap horizon of CRP grassland may be
affected by topographic position characteristics, erosion,
vegetation history, weather conditions, and previous farming
practices.
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